WORKING WITH GWBASIC

When you have successfully loaded GWBASIC, the OK prompt will appear on the VDU. This prompt informs you that GWBASIC is ready to accept its own commands. You can now use GWBASIC in the immediate or the program mode. In the immediate mode, the computer will immediately perform any BASIC instruction you type in after you press < *ENTER*>.

In this and the following sections, you are introduce to the BASIC language by way of hands on exercises that involve the execution of BASIC instruction in the immediate mode and then in the program mode. You will be working with GWBASIC without much emphasis on this particular dialect of the BASIC language. Note that the immediate mode is also referred to as the direct mode. In the program mode, you will design program logic using flowcharts. You will then use the flowchart to write the BASIC program.

LOGICAL OPERATORS

Consider the statement: "THIS MANUAL IS WRITTEN IN FRENCH". This expression is called an assertion. We assign the truth-value TRUE or FALSE to assertions. On a digital computer, we use the bits ("1" and "0") to represent these truth-values. They are also called Logical values. The assertion at the start of this paragraph is assigned the truth-value FALSE. This truth-value can be represented on the computer system by a 0. Suppose we now negate the expression by saying: "THIS BOOK IS NOT WRITTEN IN FRENCH". We have change the truth-value of the original expression by inserting a NOT in the original statement. The NOT logical operator changes the truth-value of a logical variable. Now consider the following arithmetic assertions: 9 > 54, -85 < 42, 2+5 = 5 NOT 4 <> 9 and NOT 9 > 54 Evaluate the truth-value for each of these expressions and then use the PRINT instruction to verify your evaluation.

Note that on some computer systems a 0 is used to represent the truth-value FALSE and a -1 is used to represent the truth-value TRUE. Also note that no computer system will dispute the truth-value assigned to an arithmetic expression. Use the PRINT instruction to evaluate the set of logical expression listed at the end of the previous paragraph. Try to predict the outcome before the instruction is actually executed.

We consider the expression: "I AM NOW READING CHAPTER ONE". We can assign the truth-value TRUE (-1 or 1) to this statement and we can combine this statement with the previous statement to get the compound statement: "THIS BOOK IS WRITTEN IN FRENCH AND I AM NOW READING CHAPTER ONE".

We now have a single statement, made up of two statements combine by the word AND. The truth-value of this compound expression is 0. This is because one of the original expressions has a truth-value of 0. Generally, we can say that when two statements are combine with the logical AND operator, the

compound statement that is formed will have a truth value of 0 if at least one of the original statement have a truth value of 0.

Use PRINT instructions to evaluate the following expressions. Try to predict the logical value before each of them is actually executed by the computer system

Now consider the following expression: "THIS BOOK IS WRITTEN IN FRENCH" OR "I AM NOW READING CHAPTER ONE". This single expression has a truth value TRUE. In general, when two statements or expressions are combine with the logical OR operator, the result has a truth value of TRUE if at least one of the statement or expression has the truth value TRUE.

Type in the following expression and try to predict their results before the system actually execute each of them.

(a) PRINT NOT (0 OR -1) (b) PRINT 9 > 54 OR 5 = 2+5 (c) PRINT NOT (9 > 54) OR -85 < 42 (d) PRINT -1 OR (3+4 <> -7) (e) PRINT (-90<20) AND (3+4-7) OR (3+4 <> 7)

Now verify what we have been saying about the two statements:

(1) THIS BOOK IS WRITTEN IN FRENCH

(2) I AM NOW READING A PART OF CHAPTER ONE.

By using a variable to represent each statement, first assign a truth value to each statement with the LET instruction and then combine them with the logical AND and the logical OR operators as in the expressions above.

WRITING A BASIC PROGRAM

In the following exercises, a < *ENTER*> written at the end of a line mean that you should press the ENTER (or RETURN) key when you have finish typing the line. Type in the following code of instructions:

```
10 REM MY FIRST PROGRAM < ENTER >
20 PRINT "THIS IS MY FIRST PROGRAM" < ENTER >
30 LET N = 0
40 IF N > 8 THEN 80 < ENTER >
50 LET N = N + 1 < ENTER >
60 PRINT N < ENTER >
70 GOTO 40 < ENTER >
80 END < ENTER >
```

You will notice that noting happens when you type a line of instruction and then press < *ENTER*>. The BASIC interpreter will not execute a command that is preceded by a line number when you press the RETURN key. Instruction written with a preceding line number is written in the program mode. When you type a line number before a command statement, the BASIC interpreter assumes that you are writing a sequence of instructions that constitute a program. A program is a sequence of commands designed to solve a specific problem on a computer system. The BASIC interpreter will not execute the instructions in a program until it receives the RUN command. Now type the following:

```
RUN <ENTER>
```

You will also notice that each proceeding line number in the program is incremented by 10. This allows easy program maintenance. This is further explained in the next chapter. The instructions in a program usually follow a logical sequence. The logical sequence in the above program is given by the following flowchart.

THE PROGRAM LOGIC

The logic to be used in the solution of this programming problem is the same as that used for the sample program in this chapter. If you did receive a tutorial copy of Logic Coder with this exercise manual, then a sample copy of the flowchart used by the sample program is on your installation disk. Run Logic Coder and then load the sample flowchart with file name "**Tele.flw**". You will edit the source code text of this flowchart to generate the required source program as given in the problem specification. You do not need to edit the algorithmic view of the flowchart, as the step by step description remains the same as with the sample program. Set the start line number for the program to be generated by selecting the Settings option on the main menu bar. Once you have edited the algorithmic text of the flowchart, you should save it with a new file name. You should ensure that the content of the original file is preserved.

Use LogicCoder to generate the required program. Open the file that contains the generated source program and edit it so that it list the data values in the table above. You should notice that LogicCoder does not create the listed data file for you whenever you use it to generate a source program. LogicCoder only uses the logic of the flowchart it is presented with along with the algorithmic text content to generate a source program. If you are not certain or do not know how to associate a description in the program flowchart with a BASIC instruction, then you should do the following exercises before you attempt to write the algorithmic text view as instructed above.

You will be using the flowchart to code the program problem solution by way of imitation.

CODING THE PROGRAM SOLUTION

Look back carefully on the example program logic design and the program code. Make careful observation of the line number in the program code where each point on the program flowchart is implemented. Choose three variable names to read the data values from each record in the input data file and then complete the table below.

VARIABLE NAME CHOSEN	FIELD FROM WHICH DATA WILL BE READ	VARIABLE TYPE

Write the variables in the sequence in which they should be written (a) after the READ statement and (b) after the PRINT statement in the program code:

(a) 1._____, 2..____, 3._____ (b) 1._____, 2..____, 3._____

Write the program code starting with the program documentation in a manner similar to that of the sample program coding listed on page 17. Use a clean sheet of coding paper or a clean sheet of paper if coding sheets are not available. Write as neat as possible without committing any syntax error.

When you have finish writing the program code, use letters of the alphabet to label each point on your program flowchart where an intended instruction is to be implemented. Write the same letter beside each line number in the program code where the intended instruction is implemented. If you are experiencing doubt in implementing the program code, then look back on the example program in this chapter and imitate the coding as close as possible without committing any syntax or logical error. Hand in your program design and the associated code to the lab supervisor or your tutor when you are finish.

ADDITIONAL PROGRAMMING EXERCISES

1. A list of names, street address, cities, and postcode of customers is to be prepared. The input test data file is listed below. The printed report should have the name on the first line, the street address on the second line, and the city and postcode on the next line. Two blank lines should separate the output data from each record. The message "END OF ADDRESS LIST", is to be printed at the end of processing all records,

NAME	STREET ADDRESS	CITY	TELE.	POSTCODE
			NUMBER	
ACE COMPANY	111 PINE WAY	LAMOIN	953 6693	LA29 6ZN
DAN BROTHERS	985 ARROW DRIVE	SEAVIEW	312 7998	SV5 21Q
YANK PC GAMES	773 SKY CLOSE	PARKVIEW	925 1119	PA35 10QD
GOGO FOODS	881 OAK ROAD	MONTHCLARE	063 5540	MC6 15A
MICRO ELECS	95 BAKERS ROAD	SILICON	323 8989	SI21 5CU

 Table 2x-3 Test data to be used by the program

The logic to be used in the program solution is illustrated in the flowchart below.

Figure 2x-7 Unlike previous programs, the processes performed in the main loop of the program logic does several print operation for each record that is processed.

Use the logic illustrated in the flowchart to code the program that will produce the required output.

Write down the name of the fields in each record of the input data file that are (a) string and that are (b) Numeric.

Write down the variable name that you intend to use in the READ instruction to read each record in the input data file. Write these variable names in the sequence in which they will be written in the READ instruction.

7.

PROGRAMMING ASSIGNMENT #3

A traffic citation report is to be prepared. You are required to design and code a program that will produce the report.

INPUT DATA FILE

The input test data file consists of records. Each record contain the name of the person receiving the traffic citation, a code that indicate whether the citation is for moving (code M) or for non-moving (code N) violation, and the number of citation for that person over the pass three years. The input test data is given in the table below.

NAME	TYPE OF	NUMBER OF
	VIOLATION	VIOLATION
JUNIOR HAINES	N	2
TOM JULION	Ν	6
JUNE RHODEWS	М	4
DALE SMEARS	N	1
EVERET MILLS	N	5

INPUT TEST DATA

OUTPUT

Each line on the output report list the name of the person receiving the traffic citation, a fine of 30.00 for moving violation or 10.00 for non-moving violation, a penalty of 20.00 if the number of violation is more than 3 and no penalty if the number of violation is less than or equal to 3. Each line on the report should also list the total fine due (fine + penalty). The total number of tickets, the total moving violation, the total non-moving violations, the total fines, the total penalties, and the total amount due are to be printed at the end of processing all records. The format for the output report is illustrated below.

/		CITAT	ION REPORT	
	NAME	FINE	PENALTY	TOTAL AMOUNT
	JUNIOR HAINES	30.00	0.00	30.00
	TOM JULION	10.00	20.00	30.00
	JUNE RHODES	30.00	20.00	50.00
	DALE SMEARS	10.00	0.00	10.00
	TOTAL TICKET	S 4		
	TOTAL MOVING	G VIOLATION	12	
	TOTAL NON-M	OVING VIOL	ATION 2	
	TOTAL FINES	80	0.00	
	TOTAL PENAL	TIES 4	0.00	
\mathbf{V}	TOTAL AMOUN	T DUE 12	0.00	

Figure 4x-9 Screen format for the program output.

PROGRAM LOGIC DESIGN

The logic to be used in the program that implements the program specifications given above is illustrated below. Use the logic in this flowchart to code the program that will produce the specified output report.

EXERCISES:

(1) Write down the variables that you use to read each record of the input data file. State the field from which each variable reads data.

(2) It is now decided to set the penalty by multiplying the excess violation by 15.00. Write down the expression that will determine the penalty. Use the variable name that reads the number of violations in your formula.

(3) Explain the change that is to be done to the second case structure in the loop of the program logic illustrated above in order to implement this new requirement in the program.

(4) What line number(s) should now be removed from your previous program code? Show it to your class tutor.

(5) Write down the instructions that are to replace the instructions at these line number(s).

ADDITIONAL PROGRAMMING EXERCISE

INSTRUCTIONS

A program is to be designed and then coded in BASIC that will prepare country club dues report. The Input and Output specifications are given below.

INPUT DATA

The input data file is made out of records. Each record contain the country club member's name, the type of membership, and the number of years the individual have been a member of the club. If the membership type field in the record contain an \mathbf{F} , then the membership is a family type. If the membership type field contain an \mathbf{I} , then the membership is an individual type. The table below lists the input test data.

NAME	MEMBERSHIP	YEARS OF		
	TYPE	MEMBERSHIP		
HARVEY HANLEY	F	9		
WILMA LITT	F	7		
EUGENE MITTER	F	2		
WALLY PITT	I	6		
EUNICE PONNIR	1	8		

TEST DATA

OUTPUT

The program should produce an output listing of the country club members, giving their name, the type of membership (Family or Individual), the number of years of membership to the club, and the country club dues. The dues are calculated as follows. If the member is a family member and have been a member for more than six years, the dues is 1,200.00. If the member is a family member and has been a member for six years or less, the due is 1,600.00. If a member is an Individual member and has been a member for more than six years, the club due is 800.00. If the member is an individual member and has been a member for six years or less, the dues is 1,100.00. Total for the number of members, the number of family members, the number of individual members, and the dues are to be printed at the end of the listing. The format for the output is illustrated below.

COUNTRY CLUB DUES					
NAME	TYPE	YEARS	DUES		
HARVEY HANLEY	FAMILY	9	1,200.00		
WILMA LITT	FAMILY	7	1,200.00		
EUGENE MITTER	FAMILY	2	1,600.00		
WALLY PITT	INDIVIDUAL	6	1,100.00		
EUNICE PONNIR	INDIVIDUAL	8	800.00		
TOTAL MEMBERS 5					
TOTAL INDIVIE	TOTAL INDIVIDUAL MEMBERS 2				
TOTAL FAMILY	TOTAL FAMILY MEMBERS 3				
TOTAL DUES	5,900.00				

Figure 5X-4 Output screen to be created by the program.

THE PROGRAM DESIGN

We begin the program design by specifying the tasks to be accomplished by the program.

PROGRAM TASKS

- 1. Read input records
- 2. Determine club membership dues.
- **3.** Accumulate final totals.
- 4. Print output report line
- 5. Print final totals.

The logic to be used in the solution of the programming problem is illustrated by the flowchart on the following page. Carefully examine the logic illustrated in this flowchart and then compare it to the logic in your modified flowchart of the previous program editing exercise.

Figure 5x-5

Nested case structures are used in the body of the main processing loop to determine the due calculation for each record read from the data file.

THE PROGRAM CODE (Page 1 of 2)

100 REM	COUNTRY CLU	B MAR	CH 97	С	EVELYN
110			- ,	-	REM
120 REM 7	THIS PROGRAM	PRODUCE A	COUNTRY CI	UB MEMBI	ERSHIP DUES
130 REM I	REPORT. MEMP	BERSHIP DUES	ARE BASE U	PON THE M	IEMBERSHIP TYPE
140 REM /	AND THE YEAR	S OF MEMBER	SHIP FINAL	TOTALS O	FEACH
150 REM 7	FYPE AND THE	TOTAL FEES	ARE PRINTED	ON THE R	EPORT.
160					REM
170 REM	VARIABLE NA	MES ·			
180 REM	N\$ MEM	BER NAME			
190 REM	M\$ MEM	BERS TYPE CC	DE		
200 REM	Y YEAR	S OF MEMBER	SHIP		
210 REM	Y1 SIX Y	EARS CONSTA	NT		
220 REM	D CLUB	DUES			
230 REM	M1 DUES	FOR FAMILY	MEMBER SIX	YEARS OR	MORE
240 REM	M2 DUES	FOR FAMILY	MEMBERS L	ESS THAN S	SIX YEARS
250 REM	M3 USE	FOR INDIVIDU	ALS SIX OR I	MORE YEAL	RS
260 REM	M4 DUES		ALS LESS TH	HAN SIX YE	ARS
270 REM	F\$ FAMP	LY MEMBER C	ONSTANT		
280 REM	I\$ INDIVI	DUAL MEMBE	R CONSTANT	r	
290 REM	T1 TOT		L MEMBERS		
300 REM	T2 TOTAL	FAMILY MEN	IBERS		
310 REM	T3 TOTAL	MEMBERSHI	P DUES		
320 REM	F1S PRINT	USING FORMA	T FOR DETA	IL LINE	
330 REM	F2\$ PRINT	USING FORMA	T FOR T1		
340 REM	F3\$ PRINT	USING FORMA	T FOR T2		
350 REM	F4\$ PRINT	USING FORMA	T FOR T - TC	TAL NUME	SER OF MEMBERS
360 REM	F5\$ PRINT	USING FORMA	T FOR T3		
370	100	obiito i oidin			REM
380 REM	******	INITIALISAT	ION OF VARI	ABLES *	****
390					REM
400 LET Y	1 = 6				
410 LET M	11 = 800.00				
420 LET N	$\sqrt{12} = 1100.00$				
430 LET N	13 = 1200.00				
440 LET M	14 = 1600.00				
450 LET F	= "FAMILY"				
460 LET IS	s = "INDIVIDUA	AL"			
470 LET T	1 = 0				
480 LET T	2 = 0				
490 LET T	$\bar{3} = 0$				
500 LET F	71\$ = "\			\ ##	££.###.##"
510 LET F	2\$ = "NUMBEF	OF MEMBERS	5 ###"		,
520 LET F	3\$ = "NUMBER	OF INDIVIDU	ALS ##"		
530 LET F	4\$ = "NUMBER	OF FAMILY	###"		
540 LET F	5\$ = "TOTAL D	UES: ##.###.#	<i>4</i> "		
550		,			REM
560 REM	***** P	ROCESSING	*****	**	
570					REM
580 PRINT	TAB(12) "COU	NTRY CLUB D	UES REPORT	***	
590 PINT '	1 11				
600 PRINT	NAME	TYPE	YEARS	DUES "	

(Page 2 of 2)

610 PRINT " "				
620	REM			
630 READ N\$, M\$, Y				
640	REM			
650 IF N = "END OF FILE" THEN 920				
$660 ext{ IF N} = "F" ext{ THEN }$				
$\begin{array}{ccc} 670 \qquad \text{LET } T1 = T1 + 1 \\ 670 \qquad \text{LET } T1 = T1 + 1 \\ \end{array}$				
680 IF Y > Y1 THEN 720				
$690 \qquad \text{LET D} = M2$				
700 GOTO 750	2.214			
710	REM			
$720 \qquad \text{LET D} = \text{M1}$				
730 GOTO 750	2.214			
	REM			
750 PRINT USING F1\$; N\$, I\$, Y, D				
760 GOTO				
770	REM			
780 LET $T2 = T2 + 1$				
790 IF $Y > Y1$ THEN				
$800 \qquad \text{LET } D = M3$				
810 GOTO 860				
820	REM			
ET D = M4				
840 GOTO 860				
	REM			
860 PRINT USING F1\$; N\$, F\$, Y, D				
870 GOTO 890				
880	REM			
890 LETTT = T3 + D				
900 READ N\$, M\$, Y				
910 GOTO				
920	REM			
930 LET $T = T1 + T2$				
940 PRINT "				
950 PRINT USING F2\$; T				
960 PRINT USING F3\$; TT				
9/0 PRINT USING F4\$; T2				
980 PRINT USING F5\$; T3				
990 END				

Figure 5x-6 The BASIC program that implements the logic illustrated by the flowchart in figure 5x-5.